微分方程团队成员—杨苗苗

发布者:hhxx发布时间:2023-12-29浏览次数:112

杨苗苗,副教授,理学博士,毕业于哈尔滨工业大学。主要研究领域为非线性泛函分析、偏微分方程等,主持山东省自然科学基金1项,山东省教学改革研究项目1项。2022 年荣获第二届全国高校教师教学创新比赛全国二等奖,首届大学数学教学创新示范交流活动全国一等奖、山东省特等奖;2021 年荣获全国高校混合式教学设计创新大赛全国二等奖; 2020 年荣获山东省青年教师教学比赛一等奖;2021 年“BWIN必赢官网优秀共产党员”,2022 年“BWIN必赢官网最美教师、教书育人楷模”,2023年获得ISWFDW国际认证。

 

研究方向:非线性泛函分析、偏微分方程等。

 

承担科研项目情况

1.山东省自然科学基金培养项目,ZR2019PA020Young测度在具变指数增长问题中的应用,2019/07-2022/06,4万元,1/4、负责人

2.山东省本科教学改革研究项目,M2022180,基于融合式教学的课堂教学改革与实践,2023/01-2024/12, 1/10、负责人

 

部分代表性论文

[1]     Lei Chunyu; Yang Miaomiao; Zhang Binlin. Sufficient and Necessary Conditions for Normalized Solutions to a Choquard Equation[J]. The Journal of Geometric Analysis, 2023, 33(4)

[2]     Zhang, Jing; Guo, Lifeng; Yang, Miaomiao. Quasilinear asymptotically periodic Schrodinger-Poisson system with subcritical growth[J]. Boundary Value Problems, 2020, 2020(1): 0-109.

[3]     Yang Miaomiao; Fu Yongqiang. Existence of Weak Solutions for Quasilinear Parabolic Systems in Divergence Form with Variable Growth[J]. Electronic Journal of Differential Equations, 2018, 2018(113): 1-19.

[4]     Xiang Mingqi; Zhang Binlin; Yang Miaomiao. A fractional Kirchhoff type problem in R^N without the AR condition[J]. Complex Variables and Elliptic Equations, 2016, 61(11): 1481-1493.

[5]     Miaomiao Yang; Anran Li Multiple solutions to elliptic equations on R^N with combined nonlinearities.[J]. Abstract and Applied Analysis, 2014, 2014(2014): 1-10

[6]     Fu Yongqiang; Yang Miaomiao Nonlocal variational principles with variable growth[J]. Journal of Function Spaces, 2014, 2014(2014): 1-9

[7]     Fu Yongqiang; Yang Miaomiao Existence of Solutions for Quasilinear Elliptic Systems in Divergence Form with Variable Growth[J].Journal of Inequalities and Applications, 2014, 2014(23): 1-16.

[8]     Anmin Mao; Miaomiao Yang. Periodic solutions to non-autonomous second-order dynamical systems[J]. Advances in Pure Mathematics, 2011, 2011(1): 90-94