微分方程团队成员—朱孟坤

发布者:hhxx发布时间:2023-12-29浏览次数:87

朱孟坤,副教授,硕士生导师,澳门大学哲学(数学)博士,博士后。主要从事随机矩阵理论、正交多项式、Painlevé方程以及Heun方程的研究,近几年以第一或通讯作者在Proc. AMSAMLAMCMPAGJMP以及《数学进展》等期刊上发表论文30余篇,其中SCI收录20余篇,中文核心3篇;目前主持国家自然科学基金青年项目、山东省自然科学基金青年项目和校科教产融合试点工程项目各1项,参与广东省自然科学基金面上项目1项。

研究方向:随机矩阵理论、正交多项式以及Painlevé方程等。

承担科研项目情况

1. 山东省高等学校青创科技支持计划项目,2023KJ135随机矩阵理论在人工智能中的应用2024/01-2026/1230万元,负责人(1/7

2. 国家自然科学基金青年项目,12201333机矩阵酉系综与正交多项式中的Painlevé分析2023/01-2025/1230万元,主持

3. 山东省自然科学基金青年项目,ZR2021QA034,若干类大维随机矩阵系综中的渐近行为研究,2022/01-2024/1215万元,主持

4. BWIN必赢官网(山东省科学院)科教产融合试点工程项目,2022PX086,基于阶梯算子方法研究几类酉系综,2022/01-2023/1210万元,主持

5. 国家自然科学基金(配套)项目,2022PT071随机矩阵酉系综与正交多项式中的Painlevé分析2023/01-2025/125万元,主持

6. 广东省自然科学基金面上项目,2021A1515010361,随机矩阵与正交多项式中若干相关问题的研究,2021/01-2023/1210万元,参与(2/2

学术兼职

1. 美国《数学评论》(MathSciNet)评论员,编号: 141426;

2. 德国《数学文摘》(zbMATH)评论员,编号: 18957;

3. 期刊《Journal of Nuclear Science and Technology Updates》编委;

4. 期刊《American Journal of Applied Mathematics》编委;

5. JMPJMAAPhys. ScriptaAIMS Math. SCI杂志审稿人.

部分代表性论文(*代表通讯作者)

[1] D. Wang, M. Zhu*.Discrete, continuous and asymptotic for a modified singularly Gaussian Unitary Ensemble and the smallest eigenvalue of its large Hankel matrices. Math. Phys., Anal. Geom. (SCI)

[2] D. Wang, M. Zhu*, Y. Chen. The smallest eigenvalue of large Hankel matrices associated with a semiclassical Laguerre weight. Math. Inequ. Appl.(SCI)

[3] M. Zhu, Y. Chen, J. Yu and C. Li. Orthogonal polynomials: from Heun equations to Painlevé equations. J. Geom. Phys. (SCI)

[4] D. Wang, M. Zhu* and Y. Chen. A singular linear statistics for a perturbed LUE and the Hankel matrices. J. Math. Phys. 64 (2023) 083507. (SCI)

[5] J. Yu, S. Chen, M. Zhu*, C. Li and Y. Chen. Painlevé V and confluent Heun equations associated with a perturbed Gaussian unitary ensemble. J. Math. Phys. 64 (2023) 083501. (SCI)

[6] Y. Wang, M. Zhu*, and Y. Chen. The smallest eigenvalue of the ill-conditioned Hankel matrices associated with a semi-classical Hermite weight. Proc. Amer. Math. Soc. 151 (2023), 5345-5352. (SCI)

[7] D. Wang, M. Zhu*, Yang Chen. The Jacobi-type polynomials and general Heun equations. Appl. Math. Lett., 144 (2023) 108694. (SCI)

[8] C. Li, M. Zhu, D. Wang, J. Zhang, and X. Wang. Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials. Z. Angew. Math. Phys., 74(2) (2023): 62. (SCI)

[9] J. Zhang, M. Zhu, S. Liu, C. Li and X. Wang. Bäcklund transformation, Lax pair, infinite conservation laws and exact solutions to a generalized (2+1)-dimensional equation, Int. J. Mod. Phys. B, 36(23): 2250146. (SCI)

[10] J. Yu, C. Li, M. Zhu* and Y. Chen. Asymptotics for a singularly perturbed GUE, Painlevé III, double-confluent Heun equations, and small eigenvalues. J. Math. Phys., 63(6) (2022): 063504. (SCI)

[11] D. Wang, M. Zhu* and Y. Chen. The smallest eigenvalue of large Hankel matrices associated with a singularly perturbed Gaussian weight. Proc. Amer. Math. Soc., 150(1) (2022): 153-160. (SCI)

[12] M. Zhu, D. Wang and Y. Chen. Painlevé IV and the semi-classical Laguerre  unitary ensembles with one jump discontinuities. Anal. Math. Phys., 11 (2021): 131. (SCI)

[13] M. Zhu, C. Li and Y. Chen. Painlevé V for a Jacobi unitary ensemble with random singularities. Appl. Math. Lett., 120 (2021): 107242. (SCI)

[14] M. Zhu, D. Wang and Y. Chen. Painlevé IV, form, and the deformed Hermite unitary ensembles. J. Math. Phys., 62(3) (2021): 033508. (SCI)

[15] D. Wang, M. Zhu* and Y. Chen. Orthogonal polynomials, bi-confluent Heun equations and semi-classical weights. J. Differ. Equ. Appl., 26(7) (2020): 1000-1012. (SCI)

[16] M. Zhu, Y. Chen and C. Li. The smallest eigenvalue of large Hankel matrices generated by a singularly perturbed Laguerre weight. J. Math. Phys., 61 (2020): 073502. (SCI)

[17] D. Wang, M. Zhu* and Y. Chen. On Semi-classical Orthogonal Polynomials Associated with a Freud-type Weight. Math. Meth. Appl. Sci., 43 (2020): 5295-5313. (SCI)

[18] Y. Chen, J. Sikorowski and M. Zhu*.Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation. Appl. Math. Comput., 363 (2019): 124628. (SCI)

[19] M. Zhu and Y. Chen. On properties of a deformed Freud weight. Random Matrices: Theor. Appl., 8 (2019): 1950004. (SCI)

[20] M. Zhu, N. Emmart, Y. Chen and C. Weems. The smallest eigenvalue of large Hankel matrices generated by a deformed Laguerre weight. Math. Meth. Appl. Sci., 42 (2019): 3272-3288. (SCI)

[21] M. Zhu* and M. Ou. Global Strong Solutions to the 3D Incompressible Heat-Conducting Magnetohydrodynamic Flows. Math. Phys. Anal. Geom., 22 (2019): 8. (SCI)

[22] L. Zhan, G. Blower, Y. Chen and M. Zhu* . Center of Mass Distribution of the Jacobi unitary ensembles: Painlevé V, asymptotic expansions. J. Math. Phys., 59 (2018): 103301. (SCI)

[23] M. Zhu, Y. Chen, N. Emmart and C. Weems. The smallest eigenvalue of large Hankel matrices. Appl. Math. Comput., 334 (2018): 375-387. (SCI)

[24] 朱孟坤,王丹,Y. Chen. 一类高斯酉系综的间隙概率与Painlevé IIHeun方程,数学进展,523期,2023: 453-465.

[25] 王丹,朱孟坤*Y. Chen,王晓丽. 一类广义的十次Freud-型权函数,数学物理学报,41A4期,2021: 921-935.